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rather a triangular decomposition of A, its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition of A is of order N? and can be arranged to
guarantee that the matrix remains positive definite and nonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray [1,2].
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10.8 Linear Programming and the Simplex
Method

The subject of linear programming, sometimes called linear optimization,
concernsitself with thefollowing problem: For N independentvariablesz 1, . .., zn,
maximize the function

Z =ag1T1 + ap2x2 + -+ aNTN (10.8.1)
subject to the primary constraints
X1 Z O, To Z 0, ce TN 2 0 (1082)

and simultaneously subject to M = m; + ms + mg additional constraints, m; of
them of the form

;1T + T + -+ a;naen < b; (b; > 0) i=1,...,m; (10.8.3)
mo of them of the form
aj1T1 + ajoT2 + - +ajnry > b; >0 j=mi+1,...,m +ms (10.8.4)
and ms of them of the form

ax1T1 + aporo + -+ apnyxry = b >0

(10.85)
k:m1+m2—|—1,...,m1—|—m2—|—m3

The various a;;’s can have either sign, or be zero. The fact that the b’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by —1.
There is no particular significance in the number of constraints M being less than,
equal to, or greater than the number of unknowns N.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



424 Chapter 10.  Minimization or Maximization of Functions

A set of valuesz; . .. v that satisfies the constraints (10.8.2)—10.8.5) iscalled
afeasible vector. The function that we are trying to maximize is called the objective
function. The feasible vector that maximizes the objective function is called the
optimal feasible vector. An optimal feasible vector can fail to exist for two distinct
reasons: (i) there are no feasible vectors, i.e., the given constraints areincompatible,
or (ii) thereis no maximum, i.e., thereis a direction in NV space where one or more
of the variables can be taken to infinity while still satisfying the constraints, giving
an unbounded value for the objective function.

As you see, the subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly cultivated by a
coterie of stern acolytes who have devoted themselves to the field. Actually, the
basic ideas of linear programming are quite simple. Avoiding the shrubbery, we
want to teach you the basics by means of a couple of specific examples; it should
then be quite obvious how to generalize.

Why is linear programming so important? (i) Because “nonnegativity” is the
usual constraint on any variable x; that represents the tangible amount of some
physical commodity, like guns, butter, dollars, units of vitamin E, food calories,
kilowatt hours, mass, etc. Hence equation (10.8.2). (ii) Because one is often
interested in additive (linear) limitations or bounds imposed by man or nature:
minimum nutritional requirement, maximum affordabl e cost, maximum on available
labor or capital, minimum tolerable level of voter approval, etc. Hence equations
(10.8.3)10.8.5). (iii) Because the function that one wants to optimize may be
linear, or else may at least be approximated by alinear function — since that is the
problem that linear programming can solve. Hence equation (10.8.1). For a short,
semipopular survey of linear programming applications, see Bland [1].

Here is a specific example of a problem in linear programming, which has
N:4,m1:2,m2:m3=1,henceM:4:

Maximize z =21+ x9 + 3w3 — %$4 (10.8.6)
with all the z’s nonnegative and also with

T + 2x3 < 740

2172 — 7174 S 0
) (10.8.7)
To— T3+ 2m4 2 5

1 +xo+2x3+24=9
Theanswer turnsout tobe (to 2 decimals) z; = 0, z2 = 3.33, 23 = 4.73, x4 = 0.95.

In the rest of this section we will learn how this answer is obtained. Figure 10.8.1
summarizes some of the terminology thus far.
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Figure 10.8.1. Basic concepts of linear programming. The case of only two independent variables,
1,2, isshown. The linear function z, to be maximized, is represented by its contour lines. Primary
constraints require x; and 2 to be positive. Additional constraints may restrict the solution to regions
(inequality constraints) or to surfaces of lower dimensionality (equality constraints). Feasible vectors
satisfy all constraints. Feasible basic vectors also lie on the boundary of the allowed region. The simplex
method steps among feasible basic vectors until the optimal feasible vector is found.

Fundamental Theorem of Linear Optimization

Imaginethat westart with afull V-dimensional space of candidatevectors. Then
(inmind’seye, at least) we carve away the regionsthat are eliminated in turn by each
imposed constraint. Since the constraints are linear, every boundary introduced by
thisprocessisaplane, or rather hyperplane. Equality constraints of the form (10.8.5)
force the feasible region onto hyperplanes of smaller dimension, while inequalities
simply divide the then-feasible region into allowed and nonallowed pieces.

When all the constraints are imposed, either we are left with some feasible
region or else there are no feasible vectors. Since the feasible region is bounded by
hyperplanes, it is geometrically akind of convex polyhedron or simplex (cf. §10.4).
If there is a feasible region, can the optimal feasible vector be somewhere in its
interior, away from the boundaries? No, because the objective function is linear.
This means that it always has a nonzero vector gradient. This, in turn, means that
we could always increase the objective function by running up the gradient until
we hit a boundary wall.

Theboundary of any geometrical region has oneless dimensionthanitsinterior.
Therefore, we can now run up the gradient projected into the boundary wall until we
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426 Chapter 10.  Minimization or Maximization of Functions

reach an edge of that wall. We can then run up that edge, and so on, down through
whatever number of dimensions, until we finally arrive at a point, a vertex of the
original simplex. Since this point has all N of its coordinates defined, it must be
the solution of N simultaneous equalities drawn from the original set of equalities
and inequalities (10.8.2)—(10.8.5).

Points that are feasible vectors and that satisfy NV of the original constraints
as equalities, are termed feasible basic vectors. If N > M, then a feasible basic
vector has at least N — M of its components equal to zero, since at least that many
of the constraints (10.8.2) will be needed to make up the total of V. Put the other
way, at most M components of a feasible basic vector are nonzero. In the example
(10.8.6)—(10.8.7), you can check that the solution as given satisfies as equalities the
last three constraints of (10.8.7) and the constraint -, > 0, for the required total of 4.

Put together the two preceding paragraphs and you have the Fundamental
Theorem of Linear Optimization: If an optimal feasible vector exists, then thereis a
feasible basic vector that is optimal. (Didn’t we warn you about the terminological
thicket?)

The importance of the fundamental theorem is that it reduces the optimization
problem to a “combinatorial” problem, that of determining which N constraints
(out of the M + N constraints in 10.8.2-10.8.5) should be satisfied by the optimal
feasible vector. We have only to keep trying different combinations, and computing
the objective function for each trial, until we find the best.

Doaing this blindly would take halfway to forever. The simplex method, first
published by Dantzig in 1948 (see [2]), is away of organizing the procedure so that
(i) aseries of combinationsistried for which the objective function increases at each
step, and (ii) the optimal feasible vector is reached after a number of iterations that
isamost always no larger than of order M or NV, whichever islarger. Aninteresting
mathematical sidelight isthat this second property, although known empirically ever
since the simplex method was devised, was not proved to be true until the 1982 work
of Stephen Smale. (For a contemporary account, see [3].)

Simplex Method for a Restricted Normal Form

A linear programming problem is said to be in normal form if it has no
congtraintsin the form (10.8.3) or (10.8.4), but rather only equality constraints of the
form (10.8.5) and nonnegativity constraints of the form (10.8.2).

For our purposesit will be useful to consider an even morerestricted set of cases,
with this additional property: Each equality constraint of the form (10.8.5) must
have at least one variable that has a positive coefficient and that appears uniquely in
that one constraint only. We can then choose one such variable in each constraint
equation, and solve that constraint equation for it. The variables thus chosen are
called left-hand variables or basic variables, and there are exactly M (= m3) of
them. Theremaining N — M variables are called right-hand variables or nonbasic
variables. Obviously this restricted normal form can be achieved only in the case
M < N, so that is the case that we will consider.

You may be thinking that our restricted normal form is so specialized that
it is unlikely to include the linear programming problem that you wish to solve.
Not at al! We will presently show how any linear programming problem can be
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10.8 Linear Programming and the Simplex Method 427

transformed into restricted normal form. Therefore bear with us and learn how to
apply the simplex method to a restricted normal form.
Here is an example of a problem in restricted normal form:

Maximize z = 2x9 — 4x3 (10.8.8)
with x1, z9, x3, and x4 all nonnegative and aso with

I1:2—6I2+I3

(10.8.9)
Ty = 8+ 3wy — 4x3

This example has N = 4, M = 2; the left-hand variables are x; and z4; the
right-hand variables are x5 and x3. The objective function (10.8.8) is written so
as to depend only on right-hand variables; note, however, that thisis not an actual
restriction on objective functions in restricted normal form, since any left-hand
variables appearing in the objective function could be eliminated algebraically by
use of (10.8.9) or its analogs.

For any problem in restricted normal form, we can instantly read off afeasible
basic vector (although not necessarily the optimal feasible basic vector). Simply set
all right-hand variables equal to zero, and equation (10.8.9) then gives the values of
theleft-hand variablesfor which the constraints are satisfied. Theidea of the simplex
method is to proceed by a series of exchanges. In each exchange, a right-hand
variable and aleft-hand variable change places. At each stage we maintain aproblem
in restricted normal form that is equivalent to the original problem.

It is notationally convenient to record the information content of equations
(10.8.8) and (10.8.9) in a so-called tableau, as follows:

z 0 2 —4
T 2 —6 1
T4 8 3 —4 (10.8.10)

You should study (10.8.10) to be sure that you understand where each entry comes
from, and how to tranglate back and forth between the tableau and equation formats
of a problem in restricted normal form.

The first step in the simplex method is to examine the top row of the tableau,
which we will call the“z-row.” Look at the entriesin columns labeled by right-hand
variables (wewill call these “right-columns’). We want to imagine in turn the effect
of increasing each right-hand variable from its present value of zero, while leaving
all the other right-hand variables at zero. Will the objective function increase or
decrease? The answer is given by the sign of the entry in the z-row. Since we want
to increase the objective function, only right columns having positive z-row entries
are of interest. In (10.8.10) there is only one such column, whaose z-row entry is 2.

The second step is to examine the column entries below each z-row entry that
was selected by step one. We want to ask how much we can increase the right-hand
variable before one of theleft-hand variablesis driven negative, whichis not allowed.
If the tableau element at the intersection of the right-hand column and the left-hand
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428 Chapter 10.  Minimization or Maximization of Functions

variable’s row is positive, then it poses no restriction: the corresponding left-hand
variablewill just be driven more and morepositive. If all theentriesin any right-hand
column are positive, then there is no bound on the objective function and (having
said so) we are done with the problem.

If one or more entries below a positive z-row entry are negative, then we have
to figure out which such entry first limits the increase of that column’s right-hand
variable. Evidently thelimiting increaseis given by dividing the element in theright-
hand column (which is called the pivot element) into the element in the “ constant
column” (leftmost column) of the pivot element’s row. A value that is smal in
magnitude is most restrictive. The increase in the objective function for this choice
of pivot element is then that value multiplied by the z-row entry of that column. We
repeat this procedure on all possible right-hand columns to find the pivot element
with the largest such increase. That completes our “choice of a pivot element.”

In the above example, the only positive z-row entry is 2. There is only one
negative entry below it, namely —6, so thisis the pivot element. Its constant-column
entry is2. Thispivot will thereforeallow x5 to beincreased by 2 + |6/, which results
in an increase of the objective function by an amount (2 x 2) = |6].

The third step is to do the increase of the selected right-hand variable, thus
making it aleft-hand variable; and simultaneously to modify the | eft-hand variables,
reducing the pivot-row element to zero and thus making it aright-hand variable. For
our above example let’'s do this first by hand: We begin by solving the pivot-row

equation for the new left-hand variable x5 in favor of the old one x 1, namely
1 =2 —6x2 + 13 — To = % — %,Tl + %,Tg (10811)
We then substitute this into the old z-row,

z =21y — 43 = 2 [% — %Il + %xﬂ —dyg =2 —L1g — g, (10.8.12)

3 3 3
and into all other left-variable rows, in this case only x4,
Ty = 8+3 [% - %ZCl + %Ig} - 4173 =9 %ZCl - %.Ig (10813)
Equations (10.8.11)—10.8.13) form the new tableau
T Z3
2 1 11
? 3 ~3 3
1 1 1
2 3 6 6
_1 _7
za || 9 2 2 (108.14)

Thefourth stepisto go back and repeat thefirst step, looking for another possible
increase of the objective function. We do this as many times as possible, that is, until
all the right-hand entries in the z-row are negative, signaling that no further increase
ispossible. In the present example, this already occursin (10.8.14), so we are done.

The answer can now be read from the constant column of the final tableau. In
(10.8.14) we see that the objective function is maximized to a value of 2/3 for the
solution vector o = 1/3, 24 = 9, 1 = z3 = 0.

Now look back over the procedurethat led from (10.8.10) to (10.8.14). Youwill
find that it could be summarized entirely in tableau format as a series of prescribed
elementary matrix operations:
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10.8 Linear Programming and the Simplex Method 429

e Locate the pivot element and save it.

e Save the whole pivot column.

o Replace each row, except the pivot row, by that linear combination of itself

and the pivot row which makes its pivot-column entry zero.

¢ Divide the pivot row by the negative of the pivot.

¢ Replace the pivot element by the reciprocal of its saved value.

o Replace the rest of the pivot column by its saved values divided by the

saved pivot element.
This is the sequence of operations actually performed by a linear programming
routine, such as the one that we will presently give.

You should now be able to solve almost any linear programming problem that
starts in restricted normal form. The only special case that might stump you is
if an entry in the constant column turns out to be zero at some stage, so that a
left-hand variable is zero at the same time as all the right-hand variables are zero.
This is called a degenerate feasible vector. To proceed, you may need to exchange
the degenerate left-hand variable for one of the right-hand variables, perhaps even
making several such exchanges.

Writing the General Problem in Restricted Normal Form

Here is a pleasant surprise. There exist a couple of clever tricks that render
trivial the task of trandating a general linear programming problem into restricted
normal form!

First, we need to get rid of the inequalities of the form (10.8.3) or (10.8.4), for
example, the first three constraintsin (10.8.7). We do this by adding to the problem
so-called slack variables which, when their nonnegativity is required, convert the
inequalities to equalities. We will denote dack variables as y;. There will be
my + meo of them. Once they are introduced, you treat them on an equa footing
with the original variables x;; then, at the very end, you simply ignore them.

For example, introducing slack variables leaves (10.8.6) unchanged but turns
(10.8.7) into

1 + 23 +y1 = 740

209 — Txy +y2 =0

(10.8.15)
To — T3+ 2x4 — Y3 =

© N

1+ Ty + a3+ 24 =

(Notice how the sign of the coefficient of the slack variable is determined by which
sense of inequality it is replacing.)

Second, we need to insure that thereis a set of M left-hand vectors, so that we
can set up a starting tableau in restricted normal form. (In other words, we need to
find a “feasible basic starting vector.”) The trick is again to invent new variables!
Thereare M of these, and they are called artificial variables; we denote them by =z ;.
You put exactly one artificial variable into each constraint equation on the following
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430 Chapter 10.  Minimization or Maximization of Functions

model for the example (10.8.15):
z1 2740—.%'1 —21‘3—y1

23 = —2x9 + T4 — Yo

1 (10.8.16)
23 =35 — T2+ T3 — 214 + Y3

Z4=9—$1—$2—$3—$4

Our example is now in restricted normal form.

Now you may object that (10.8.16) is not the same problem as (10.8.15) or
(10.8.7) unless all the z;'s are zero. Right you are! There is some subtlety here!
We must proceed to solve our problem in two phases. First phase: We replace our
objective function (10.8.6) by a so-called auxiliary objective function
2=z — g — 23— 2y = —(749% —2x1 —4xo — 2x3 + 424 — Y1 — Y2 + Y3)

(10.8.17)
(where the last equality follows from using 10.8.16). We now perform the simplex
method on the auxiliary objective function (10.8.17) with the constraints (10.8.16).
Obvioudly the auxiliary objective function will be maximized for nonnegative z ;'s if
all the z;'s are zero. We therefore expect the ssimplex method in this first phase to
produce a set of |eft-hand variables drawn from the = ;’s and y;’s only, with al the
z;'s being right-hand variables. Ahal We then cross out the z;’s, leaving a problem
involving only x;’sand y;’sin restricted normal form. In other words, the first phase
producesan initial feasible basic vector. Second phase: Solve the problem produced
by the first phase, using the original objective function, not the auxiliary.

And what if the first phase doesn’'t produce zero values for al the z;'s? That
signals that there is no initial feasible basic vector, i.e., that the constraints given to
us are inconsistent among themselves. Report that fact, and you are done.

Hereis how to tranglate into tableau format the information needed for both the
first and second phases of the overall method. As before, the underlying problem
to be solved is as posed in equations (10.8.6)—10.8.7).

I S TR N 7S N

z 0 1 1 3| -3 0 0 0

21 740 | -1 0 | -2 0 | -1 0 0

2 0 0 | -2 0 7 0| -1 0

23 1 0 | -1 1| -2 0 0 1

24 9 | -1 | -1 | -1 | -1 0 0 0

2 || =749 2 4 2 | —4 1 1| -1
(10.8.18)

This is not as daunting as it may, at first sight, appear. The table entries inside
the box of double lines are no more than the coefficients of the original problem
(10.8.6)—(10.8.7) organized into a tabular form. In fact, these entries, along with
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10.8 Linear Programming and the Simplex Method 431

the values of N, M, m1, mo, and mgs, are the only input that is needed by the
simplex method routine below. The columns under the slack variables y; simply
record whether each of the M constraintsis of theform <, >, or =; thisisredundant
information with the values m 1, ms, mgs, as long as we are sure to enter the rows of
the tableau in the correct respective order. The coefficients of the auxiliary objective
function (bottom row) are just the negatives of the column sums of the rows above,
s0 these are easily calculated automatically.

The output from a simplex routine will be (i) a flag telling whether a finite
solution, no solution, or an unbounded sol ution wasfound, and (ii) an updated tabl eau.
The output tableau that derives from (10.8.18), given to two significant figures, is

R N

2 1703 | —95 | —.05 | —1.05
o 333 | —35 | —.15 35
T3 473 | —.55 .05 — 45
T4 95 | —.10 10 10
vi || 730.55 10 | —.10 .90

(10.8.19)

A little counting of the x;'s and y;’s will convince you that there are M + 1
rows (including the z-row) in both the input and the output tableaux, but that only
N + 1 — mg columns of the output tableau (including the constant column) contain
any useful information, the other columns belonging to now-discarded artificial
variables. In the output, the first numerical column contains the solution vector,
along with the maximum value of the objective function. Whereadlack variable (y ;)
appears on the left, the corresponding value is the amount by which its inequality
is safely satisfied. Variables that are not left-hand variables in the output tableau
have zero values. Slack variables with zero values represent constraints that are
satisfied as equalities.

Routine Implementing the Simplex Method

Thefollowing routineis based algorithmically on theimplementation of Kuenzi,
Tzschach, and Zehnder [4]. Aside from input values of M, N, m1, ms, ms, the
principal input to the routine is a two-dimensional array a containing the portion of
the tableau (10.8.18) that is contained between the double lines. Thisinput occupies
thefirst M + 1 rowsand N + 1 columnsof a. Note, however, that referenceis made
internally to row M + 2 of a (used for the auxiliary objective function, just as in
10.8.18). Therefore the physical dimensions of a,

REAL a(MP,NP) (10.8.20)

must have NP> N + 1 and MP> M + 2.You will suffer endless agonies if you fail
to understand this simple point. Also do not neglect to order the rows of a in the
same order as equations (10.8.1), (10.8.3), (10.8.4), and (10.8.5), that is, objective
function, <-constraints, >-constraints, =-constraints.
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On output, thetableau a isindexed by two returned arraysof integers. iposv(j)
contains, for j=1... M, thenumber ; whose original variable x ; is now represented
by row j+1 of a. These arethustheleft-hand variablesin the solution. (Thefirst row
of a is of coursethe z-row.) A valuei > N indicates that the variableis ay; rather
thanan z;, xn1; = y;. Likewise, izrov(j) contains, for j=1... N, the number ¢
whose origina variable z; is now aright-hand variable, represented by column j+1
of a. These variablesare all zero in the solution. The meaning of i > N isthe same
as above, except that i > N + m; + mo denotesan artificial or slack variable which
was used only internally and should now be entirely ignored.

Theflagicaseisreturnedaszeroif afinite solutionisfound, +1 if the objective
function is unbounded, —1 if no solution satisfies the given constraints.

The routine treats the case of degenerate feasible vectors, so don’t worry about
them. You may also wish to admire the fact that the routine does not require storage
for the columns of the tableau (10.8.18) that are to the right of the double line; it
keeps track of slack variables by more efficient bookkeeping.

Please note that, as given, the routine is only “semi-sophisticated” in its tests
for convergence. While the routine properly implements tests for inequality with
zero as tests against some small parameter EPS, it does not adjust this parameter to
reflect the scale of the input data. This is adequate for many problems, where the
input data do not differ from unity by too many orders of magnitude. If, however,
you encounter endless cycling, then you should modify EPS in the routines simplx
and simp2. Permuting your variables can aso help. Finaly, consult [5].

SUBROUTINE simplx(a,m,n,mp,np,ml,m2,m3,icase,izrov,iposv)

INTEGER icase,m,ml,m2,m3,mp,n,np,iposv(m),izrov(n),MMAX,NMAX

REAL a(mp,np) ,EPS

PARAMETER (MMAX=100,NMAX=100,EPS=1.e-6)

USES sinpl, sinp2, si np3
Simplex method for linear programming. Input parameters a, m, n, mp, np, m1, m2, and m3,
and output parameters a, icase, izrov, and iposv are described above.
Parameters: MMAX is the maximum number of constraints expected; NMAX is the maximum
number of variables expected; EPS is the absolute precision, which should be adjusted to
the scale of your variables.

INTEGER 1i,ip,is,k,kh,kp,n11,11(NMAX),13(MMAX)

REAL bmax,ql

if (m.ne.m1+m2+m3)pause ’bad input constraint counts in simplx’

nli=n

do1u k=1,n
11(k)=k Initialize index list of columns admissible for exchange.
izrov(k)=k Initially make all variables right-hand.

enddo 11

do12 i=1,m
if(a(i+1,1).1t.0.)pause ’bad input tableau in simplx’ Constants b; must be non-
iposv(i)=n+i negative.
Initial left-hand variables. m1 type constraints are represented by having their slack vari-
able initially left-hand, with no artificial variable. m2 type constraints have their slack
variable initially left-hand, with a minus sign, and their artificial variable handled implic-
itly during their first exchange. m3 type constraints have their artificial variable initially

left-hand.
enddo 12
if (m2+m3.eq.0)goto 30 The origin is a feasible starting solution. Go to phase two.
do 13 i=1,m2 Initialize list of m2 constraints whose slack variables have never
13(i)=1 been exchanged out of the initial basis.
enddo 13
do 15 k=1,n+1 Compute the auxiliary objective function.
q1=0.

do 14 i=mi+1,m
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10.8 Linear Programming and the Simplex Method 433

ql=ql+a(i+1,k)
enddo 14
a(m+2,k)=-q1
enddo 15
10 call simpl(a,mp,np,m+1,11,n11,0,kp,bmax) Find max. coeff. of auxiliary objec-
if (bmax.le.EPS.and.a(m+2,1) .1t.-EPS)then tive fn.
icase=-1 Auxiliary objective function is still negative and can't be im-
return proved, hence no feasible solution exists.
else if(bmax.le.EPS.and.a(m+2,1).le.EPS)then
Auxiliary objective function is zero and can’'t be improved; we have a feasible starting vec-
tor. Clean out the artificial variables corresponding to any remaining equality constraints by

goto 1's and then move on to phase two by goto 30.

do 16 ip=ml+m2+1,m
if (iposv(ip) .eq.ip+n)then

call simpil(a,mp,np,ip,11,nl1,1,kp,bmax)

if (bmax.gt.EPS)goto 1
endif
enddo 16
do 18 i=mi1+1,m1+m2
if (13(i-m1).eq.1)then
do 17 k=1,n+1
a(i+1,k)=-a(i+1,k)
enddo 17
endif
enddo 18
goto 30
endif
call simp2(a,m,n,mp,np,ip,kp)
if (ip.eq.0)then

Found an artificial variable for an equality

constraint.

Exchange with column corresponding to max-
imum pivot element in row.

Change sign of row for any m2 constraints
still present from the initial basis.

Go to phase two.

Locate a pivot element (phase one).
Maximum of auxiliary objective function is

icase=-1 unbounded, so no feasible solution ex-
return ists.
endif
1 call simp3(a,mp,np,m+1,n,ip,kp)
Exchange a left- and a right-hand variable (phase one), then update lists.
if (iposv(ip) .ge.n+m1+m2+1)then Exchanged out an artificial variable for an
do 19 k=1,nl1 equality constraint. Make sure it stays
if(11(k) .eq.kp)goto 2 out by removing it from the 11 list.
enddo 19
2 nli=nli-1
do 21 is=k,nll
11(is)=11(is+1)
enddo 21
else
kh=iposv(ip)-mi-n
if (kh.ge.1)then Exchanged out an m2 type constraint.
if (13(kh) .ne.0)then If it’s the first time, correct the pivot col-
13(kh)=0 umn for the minus sign and the implicit
a(m+2,kp+1)=a(m+2,kp+1)+1. artificial variable.
do 22 i=1,m+2
a(i,kp+1)=-a(i,kp+1)
enddo 22
endif
endif
endif
is=izrov(kp) Update lists of left- and right-hand variables.
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 10 Still in phase one, go back to 10.
End of phase one code for finding an initial feasible solution. Now, in phase two, optimize it.
30 call simpi(a,mp,np,0,11,n11,0,kp,bmax) Test the z-row for doneness.
if (bmax.le.EPS)then Done. Solution found. Return with the good news.
icase=0
return

endif
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call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase two).

if (ip.eq.0)then Objective function is unbounded. Report and return.

icase=1
return
endif

call simp3(a,mp,np,m,n,ip,kp) Exchange a left- and a right-hand variable (phase two),

is=izrov(kp) update lists of left- and right-hand variables,
izrov(kp)=iposv(ip)

iposv(ip)=is

goto 30 and return for another iteration.

END

The preceding routine makes use of the following utility subroutines.

SUBROUTINE simpi(a,mp,np,mm,11,nll,iabf,kp,bmax)
INTEGER iabf,kp,mm,mp,nll,np,11(np)
REAL bmax,a(mp,np)

Determines the maximum of those elements whose index is contained in the supplied list

11, either with or without taking the absolute value, as flagged by iabf.
INTEGER k
REAL test
if(nll.1le.0)then No eligible columns.
bmax=0.
else
kp=11(1)
bmax=a (mm+1,kp+1)
do 11 k=2,nll
if (iabf.eq.0)then
test=a(mm+1,11(k)+1)-bmax
else
test=abs(a(mm+1,11(k)+1))-abs (bmax)
endif
if(test.gt.0.)then
bmax=a (mm+1,11 (k)+1)
kp=11(k)
endif
enddo 11
endif
return
END

SUBROUTINE simp2(a,m,n,mp,np,ip,kp)
INTEGER ip,kp,m,mp,n,np
REAL a(mp,np),EPS
PARAMETER (EPS=1.e-6)
Locate a pivot element, taking degeneracy into account.

INTEGER i,k
REAL q,90,91,9p
ip=0

don i=1,m
if (a(i+1,kp+1).1t.-EPS)goto 1
enddo 11
return No possible pivots. Return with message.
ql=-a(i+1,1)/a(i+1,kp+1)
ip=i
do 13 i=ip+1,m
if (a(i+1,kp+1) .1t.-EPS)then
g=-a(i+1,1)/a(i+1,kp+1)
if(q.1t.ql)then
ip=i
qi=q
else if (q.eq.ql) then We have a degeneracy
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10.8 Linear Programming and the Simplex Method 435

do 12 k=1,n
gp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if (q0.ne.qgp)goto 2

enddo 12
if(q0.1t.qgp)ip=i
endif
endif
enddo 13
return
END

SUBROUTINE simp3(a,mp,np,il,kl,ip,kp)
INTEGER il,ip,k1,kp,mp,np
REAL a(mp,np)
Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER ii,kk
REAL piv
piv=1./a(ip+1,kp+1)
do 12 ii=1,il1+1
if(ii-1.ne.ip)then
a(ii,kp+1)=a(ii,kp+1)*piv
do 11 kk=1,k1+1
if (kk-1.ne.kp)then
a(ii,kk)=a(ii,kk)-a(ip+1,kk)*a(ii,kp+1)
endif
enddo 11
endif
enddo 12
do 13 kk=1,k1+1
if (kk-1.ne.kp)a(ip+1,kk)=-a(ip+1,kk)*piv
enddo 13
a(ip+1,kp+1)=piv
return
END

Other Topics Briefly Mentioned

Every linear programming problem in normal form with N variables and M
constraints has a corresponding dual problem with M variablesand N constraints.
The tableau of the dual problem is, in essence, the transpose of the tableau of the
original (sometimes called primal) problem. It is possible to go from a solution
of the dual to a solution of the primal. This can occasionally be computationally
useful, but generally it is no big deal.

The revised simplex method is exactly equivalent to the simplex method in its
choice of which left-hand and right-hand variables are exchanged. Its computational
effort is not significantly less than that of the simplex method. It does differ in
the organization of its storage, requiring only a matrix of size M x M, rather than
M x N, in its intermediate stages. If you have a lot of constraints, and memory
size is one of them, then you should look into it.

The primal-dual algorithm and the composite simplex algorithm are two dif-
ferent methods for avoiding the two phases of the usual simplex method: Progress
is made simultaneously towards finding a feasible solution and finding an optimal
solution. There seems to be no clearcut evidence that these methods are superior

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



436 Chapter 10.  Minimization or Maximization of Functions

to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraintsare
replaced by expressions nonlinear in the variables are called nonlinear programming
problems. The literature on such problemsisvast, but outside our scope. The special
case of quadratic expressionsis called quadratic programming. Optimization prob-
lems where the variables take on only integer values are called integer programming
problems, a specia case of discrete optimization generally. The next section looks
at a particular kind of discrete optimization problem.
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10.9 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “ solved” thefamoustraveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each of N cities in turn. (Other practical methods have also been
found.) The method has al so been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires[3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples of combinatorial
minimization. Thereisan objective function to be minimized, as usual; but the space
over which that function is defined is not simply the N-dimensiona space of N
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